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CorbFuzz: Checking Browser Security Policies with Fuzzing
Anonymous Author(s)

ABSTRACT
Browsers use security policies to block malicious behaviors. Cross-
Origin Read Blocking (CORB) is a browser security policy for pre-
venting side-channel attacks such as Spectre. We propose a web
browser security policy fuzzer called CorbFuzz for checking CORB
and similar policies. In implementing a security policy, the browser
only has access to HTTP requests and responses, and takes policy
actions based solely on those interactions. In checking the browser
security policies, CorbFuzz uses a policy oracle that tracks the web
application behavior and infers the desired policy action based on
the web application state. By comparing the policy oracle with the
browser behavior, CorbFuzz detects weaknesses in browser security
policies. CorbFuzz checks the web browser policy by fuzzing a set
of web applications where the persistent layer queries are symboli-
cally evaluated for increased coverage and automation. CorbFuzz
collects type information from database queries and branch condi-
tions in order to prevent the generation of inconsistent data values
during fuzzing. We evaluated CorbFuzz on CORB implementations
of Chromium and Webkit and Opaque Response Blocking (ORB)
policies on web applications collected from GitHub and found three
classes of weaknesses in Chromium’s implementation of CORB.
ACM Reference Format:
Anonymous Author(s). 2021. CorbFuzz: Checking Browser Security Policies
with Fuzzing. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Web browsers allow users to do a variety of things, such as stream-
ing videos or accessing bank accounts. A malicious website should
not be able to access sensitive information about a web application
user, for example a bank account page. Unfortunately, due to vulner-
abilities like cross-site script inclusion [23], cross-site scripting [21],
Spectre [31], and Meltdown [35], malicious websites can access sen-
sitive information that they should not have access to. Due to the
aforementioned threats, browsers have adopted an increasing num-
ber of security policies like Cross-Origin Read Blocking (CORB)
Policy [3] that they use to protect sensitive data. The goal of the
CORB policy is to prevent cross-origin access to confidential data.

In order to determine if a behavior is malicious or not, a browser
security policy has to infer properties about the web application
that is being used. Yet, given that a browser does not have access
to web application’s internal state, nor its codebase, it cannot pre-
cisely determine properties of the web application. Instead, security
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policy implementations use the information browsers have access
to, like HTTP responses and requests, to infer properties of web
applications and decide to take a policy action according to those
properties.

In this paper, we focus on CORB as a browser security policy.
CORB aims to identify and block all cross-origin loads of confi-
dential response content. However, browsers can not determine
whether a specific response is confidential without inspecting the
state of the web application. Since the browser cannot do that, the
CORB policy implementations examine the responses instead, and
use information inside responses and heuristics that reflect the ex-
pected behavior, to determine whether the content is confidential.

These heuristic approaches need to be tested comprehensively in
order to look for scenarios where they fail to protect sensitive infor-
mation. A fully automated testing approach would enable browser
security policy developers to identify weaknesses in existing poli-
cies and to quickly evaluate policy modifications.

We developed a coverage-guided fuzzing technique to check
browser security policies. Given a browser and a security policy, we
use a set of open-source web applications to look for weaknesses
in the security policy implementation of that browser. We use the
open-source web applications as fuzzing targets and our fuzzer
creates requests for each of themwith the goal of achieving as much
coverage as possible. By exploring a variety of web applications, and
covering as many behaviors as possible for each web application,
our fuzzer tests a large set of scenarios for the browser security
policy implementation.

In order to identify weaknesses in the browser policy implemen-
tation, we define a reference implementation of the security policy
by tracking the web application states and utilize it as an oracle. The
oracle is more accurate than the browser policy implementation
since during fuzzing the oracle has access to all internal informa-
tion of the web application and properties of each response. Our
fuzzer compares the decisions made by the oracle to the security
policy implementation of the browser and reports any differences,
which correspond to a weakness in the browser security policy
implementation.

Most web applications typically access session data, cookies, and
data store [34]. These web applications are called data-dependent.
Fuzzing a data-dependentweb application requiresmanually setting
up these data sources, for example populating a database [16, 18].
However, given that we need to use a set of web applications dur-
ing fuzzing, it is not practical to manually set up the data store
and session values for each web application. Thus, we propose an
execution environment for data-dependent web applications that
enables us to automate the process. Instead of manually setting
up data sources for all fuzzing targets, our tool automatically syn-
thesizes data store, sessions, and cookies. This approach not only
removes the requirement of web applications on its environment
but also allows our fuzzer to easily mutate the data, leading to
higher coverage.
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The execution environment we propose generates SMT con-
straints for database queries and sessions or cookies usage. The
SMT constraints for a database query encodes the SQL statement
and we use an SMT solver to generate data values that are consis-
tent with the query. Those SMT constraints generated for sessions
and cookies are used to check feasibility of execution paths of the
web application like in symbolic execution.

Using this approach we have implemented a fuzzer focusing on
the CORB policy, which we call CorbFuzz. While CorbFuzz is opti-
mized for CORB analysis, it can be easily extended to support other
policies by defining corresponding oracles. Additionally, for our
prototype, we restrict our scope to PHP applications. Our approach
can be extended to support web applications in different languages
by providing a simple instrumentation for the target language as
discussed in Section 3.

We evaluate the implementation of CORB policy in both Chromium
and Webkit. CorbFuzz did not find any policy violations in We-
bkit and shows that CORB implementation in Webkit is robust. In
Chromium, on the other hand, CorbFuzz identifies three types of
code patterns that can enable attackers to bypass CORB protection.
Furthermore, we modified CorbFuzz to check a sibling policy by
Firefox called Opaque Response Blocking (ORB).

In this paper we present the following research contributions:

• Browser Policy Fuzzer:We propose a new fuzzer, CorbFuzz,
for checking browser security policies before deployment.
CorbFuzz is guided by web application code coverage and
uses a policy oracle to identify weaknesses in browser secu-
rity policies. It is fully automated and can be easily applied
after each change in policy implementation.
• Data Synthesis: To tackle fuzzing environment setup for data-
dependent applications, we propose an execution environ-
ment that synthesizes and mutates the data when required.
Our data synthesis approach uses SMT encoding and con-
straint solving to ensure consistency of data generated for
database queries and sessions or cookies execution.
• Empirical Evaluation: We used CorbFuzz to check the CORB
implementation of Chromium andWebkit. We also checked a
sibling policy ORB for Firefox. We fuzzed these policies using
responses of PHP web applications that we obtained from
GitHub. Using CorbFuzz, we discovered three code patterns
that expose weaknesses in the CORB implementation of
Chromium. One of these code patterns has been previously
documented, and the Chromium team patched the policy
weakness caused by another code pattern we discovered
after our report.

The paper is structured as follows. In Section 2, we present the
background on browser precautions. In Section 3, we discuss how
we synthesize the data for web applications. In Section 4, we present
our fuzzing framework. In Section 5, we evaluate CorbFuzz and
describe the detected CORB weaknesses by our tool. In Section 6,
we present the related work. In Section 7, we conclude the paper.

2 BACKGROUND
In this section, we provide the background information on Site
Isolation and Cross-Origin Read Blocking policy.

2.1 Site Isolation and Information Leakage
Browser information leakage has gained increasing exposure in
the last few years. According to the Same-Origin Policy (SOP) [40],
one of the fundamental rules in browsers, documents from dif-
ferent origins cannot interact with each other. However, more
and more methods have been discovered to conduct cross-origin
content leak [22, 24, 26, 27, 33, 43]. Additionally, the discovery
of cache-related side-channel vulnerabilities like Spectre[30] and
Meltdown[35] worsen the information leaks.

Site Isolation policy [11, 38] has been proposed to counter cross-
origin content leak. Such a policy is also known as "one site per
process" policy. Namely, a browser should ensure that documents
from different origins are rendered and executed in their own re-
spective sandbox. Such an effort reduces the chance of success of
cache side channel attack and makes most cross-origin information
leakage vulnerabilities in browser no longer exploitable.

2.2 Cross-Origin Read Blocking
While Site Isolation policy removes the possibility of documents
in different origins interacting with each other directly, there are
still existing ways to inject documents from different origins via
interfaces provided by browsers. A possible method is to include
the documents from different origins as resources required by the
webpage. Some examples have been provided below, for which the
first line is to load an endpoint as an image and second line is to
load it as a script.
<img src="//a.com/secret" />
<script src="//a.com/secret"></script>

In addition, other browser JavaScript interfaces could be used
to pass partial sensitive information from one origin to another. A
famous example is CVE-2020-6442 [4][7]. The vulnerability is that
by loading two cross-origin documents into the cache, it is possible
to calculate the difference of sizes between two documents by calcu-
lating the increase the size of the cache. The size leakage technique
could be easily exploited to deduce preference and visiting history
of users.

All these interactions make Site Isolation no longer effective.
While blocking all cross-origin requests could solve the issue, ex-
isting websites legitimately utilizing cross-origin resources would
similarly be affected by this method. Thus, Cross-Origin Read Block-
ing (CORB) policy has been proposed. It aims to prevent HTTP
responses from being loaded into contexts at different origins if
the information is deemed confidential. The authors have claimed
that this could effectively reduce potential dubious cross-origin
resource fetches.

A simplified version of the CORB policy implementation in
Chromium is shown in Procedure 1. This code is executed as soon
as a response is received by the browser. It performs a few initial
checks, including whether the scheme is HTTP(S). If these checks
are not violated, the response is allowed to be loaded into a context
in a different origin (i.e., not blocked). The procedure returns NULL
if the response is blocked.

The CORB policy authors defined a set of response MIME types
that are likely related to secrets, namely protected MIME types.
For instance, MIME types related to images would not be blocked,
yet MIME types related to JSON are blocked as web developers

2
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commonly use JSON serialized response to conduct communication
between frontend and backend.

Chromium team took a different approach to implement CORB.
Instead of strictly following the policy documented at W3C[5],
the team added extra measures to confirm the MIME types by in-
specting the response [9]. This measure is known as "confirmation
sniffing". They claimed that this could effectively reduce false posi-
tives (i.e., reduce the cases when a legitimate response is blocked),
thus increasing the compatibility of Chromium with more web
applications [3]. For instance, as seen in Lines 6&7 in Procedure 1,
if the response MIME type is related to JSON, which is in the pro-
tected MIME type list, but the content in the response is an image,
not a JSON, then Chromium follows the property of the content and
does not block. On the other hand,Webkit strictly follows the policy
and blocks the response since it does not have such a measure [1].

Procedure 1 Partial CORB Implementation in Chromium

1: procedure CorbCheck(Response)
2: if Response.Scheme ∉ {HTTP, HTTPS} then
3: return Response
4: mime← Response.MimeType
5: if mime ∈ ProtectedMimeTypes then
6: if mime ∈ JSON ∧¬ IsJSON(Response) then
7: return Response
8: if mime ∈ XML ∧¬ IsXML(Response) then
9: return Response
10: else
11: return NULL
12: return Response

3 DATA SYNTHESIS
In this section, we discuss our data synthesis techniques that enable
us to handle data-dependent web applications automatically dur-
ing fuzzing, without the need for manual set up of fuzzing targets.
Instead of querying database, data synthesis approach translates
the query to constraints and generate the respective data. Addi-
tionally, data synthesis approach generates results for comparisons
involving sessions or cookies so as to achieve higher test coverage.

3.1 Query Constraint Extraction
We first discuss handling of database queries. The results gener-
ated by CorbFuzz for a specific database query are constrained by
three measures: row count, table architecture, and constraint that
describes the resulting rows and columns from the query. Most
open-source web applications either do not include table schema
or require laborious work to set up the tables. Thus, we assume
that table schema is not given, and the generation of the database
query result is run without the knowledge of the table architecture.
For these, we respectively define three functions:MaxRow, Fields,
Constraint. The input of all these functions is a relational algebra
translated from the query.

MaxRow provides an estimation of the maximum rows of the
query result. It is implemented by considering the set operators
and LIMIT.

1 <?php
2 $conn = mysqli_connect (...);
3
4 $res = $conn ->query(
5 "SELECT␣*␣FROM␣A␣WHERE␣A.c␣=␣1"
6 );
7
8 $x = $res ->fetch_assoc ();
9
10 $a = $x["a"];
11
12 if ($a == 0) echo 1;

Figure 1: Example of PHP Application Database Call

To reconstruct the table schema, CorbFuzz learns from the query
by observing the field names used inside it. We define the Fields
function, which produces a set of pairs representing fields returned
by the query. The function is implemented by tracking the rename,
projection, and select operators. The first part of the pair indicates
the table name, and the second part is the name of the field. Note
that our implementation generates and returns all fields involved
in the execution of the query in contrast to what the database with
the actual table schema would return. This approach reduces the
complexity of implementation and is justified by our assumptions
that the developer would never use a field in the application that
does not exist. In the case that a wildcard projection (i.e., asterisk)
is used, the function only returns the fields used throughout the
relational algebra, which could be a subset of fields returned if
it is executed on the correct table schema. The missing fields are
addressed by Field procedure.

To ensure the response could be reproduced in the web ap-
plication with real database settings, we additionally extract the
constraints from the query and generate a consistent result that
conforms to these constraints. For this, we define Constraints
function, which outputs all the row-based and column-based con-
straints in the relational algebra for the SMT solver. We utilize a
subset of translation rules proposed by Veanes et al. [44]. Note that
this function also assigns types to fields if the field is compared with
a concrete value in the select operator or returned by set functions
like COUNT.

We provide an example for the functions with query in Line 5 of
Figure 1 as input. The relational algebra of the query is SELECTA.c = 1 (A).
Since there is no LIMIT operation inside the query, theMaxRow
outputs that the maximum line is infinite. The Fields function pro-
duces a set with one pair: < A, c >. The Constraints function
translates the condition in the select operator to the SMT formula:
(= A#c 1) and assign < A, c > to be of integer type.

The query result generation depends on a seed that is generated
and tracked by the fuzzer. The seed is a 32-bit integer sampled
from a uniform distribution over [0, 232 − 1] and there is a bijection
between the seed and the state of database. The crucial procedures
for the generation workflow are presented in Procedure 2. Before
execution of a web application, the Initialization procedure is
executed after the initialization of the runtime. This procedure
initiates a set of global hashtables for caching. These are preserved
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throughout the runtime lifecycle and synchronized throughout all
runtimes (since we use multi-threaded distributed fuzzing this is
necessary).

When a query is sent to the database, and the web application is
waiting for the response, Add procedure replaces the original code
for sending the query and receiving the response from the database.
Add procedure takes two arguments: the query and the seed. If
the cache contains the previous solution for the query and the
seed, the cached result is returned. Otherwise, the query is parsed
into relational algebra to extract constraints, fields, and maximum
length (as mentioned before) and an empty hashtable is returned
as the result. The returned hashtable, regardless of whether there
is a cache hit, is tracked.

Procedure 2 Database Query Result Generation Algorithm

1: procedure Initialization
2: ConcreteResults← HashTable()
3: Types← HashTable()
4: Cache← HashTable()
5: procedure Add(Query, Seed)
6: if Cache(Query) = NULL then
7: ra← Parse(Query)
8: Cache(Query).L←MaxRow(ra)
9: Cache(Query).F← Fields(ra)
10: Cache(Query).C← Constraints(ra)
11: results← ConcreteResults(Query, Seed)
12: return Tracked(results)
13: procedure Field(Query, Seed, Name)
14: cache← Cache(Query)
15: r← ConcreteResults(Query, Seed)
16: if Name ∉ cache.F then
17: r.F← cache.F

+← Name
18: Types(Query, Name)← 𝜏 .AssignWeight(0)
19: for field ∈ r.F do
20: if field.Type = NULL then
21: 𝜏 ← Types(Query, field)
22: field.Type← Sample(𝜏)
23: len← Seed % cache.L
24: result← Solve(r.Q ∪¬ cache.Solved(r.F, len), r.F, len)
25: if result = UNSAT then return Abort()
26: cache.Solved(r.F, len)

+← result
27: return result(Name)
28: procedure Notify(Query, Name, IType)
29: 𝜏 ← Type(Query)(Name)
30: 𝜏(IType)← 𝜏(IType) + Weight

If the tracked hashtable is searched in the later executions of
the application and the searched key corresponds to NULL, the
Field procedure is called. In addition to the query and the seed, this
procedure takes an additional argument: the name of the field (i.e.
the key of the hashtable that the application is searching for). Field
procedure assumes that the web application code is correct and the
queried field must exist. Under the circumstance that this specific
field name is not inferred from the SQL query statement (e.g. a wild-
card select), CorbFuzz appends the field name to the global cache

so that in the future for this query this specific field would be con-
sidered. Before solving the constraints generated from the previous
evaluation of the query, CorbFuzz first probabilistically selects a
type from all possible data types for each field, which is discussed in
Section B. The number of rows is generated using the seed value. To
avoid generating an identical result, CorbFuzz appends constraints
stating that the result should not be equal to previously generated
results if they have same type and same amount of row count as the
current context. If solver concludes these constraints could derive
no result (i.e. UNSAT), the web application immediately returns an
internal error to abort the data synthesis workflow. However, this
case has not happened in our experiments because constraints for
SQL queries are very permissive.

We demonstrate an example for the workflow over the PHP
application code listed in Figure 1. Before the execution of any code,
as soon as PHP runtime starts, the Initialization procedure is
called. Then, on Line 2, the code calls mysqli_connect to establish
connection to MySQL database. Inside the runtime, this function
is replaced with a dummy method that always acts as if there is a
successful connection. Then, the code is executed to send a query to
MySQL database (Line 4) and wait for the response (Line 8). Instead
of sending the query, the runtime calls the Add procedure. Suppose
we are using a new seed, the procedure would evaluate the query
and return a traced empty hashtable. On Line 10, the hashtable is
searched with a key a. Since the hashtable is empty, the key would
refer to NULL. Instead of returning NULL, the Field procedure is
called to solve for all the fields, including the field searched by the
application.

3.2 Type Inference
The knowledge of field names is not enough to generate the data.
Correct type of each field is also required for generating a consistent
result. Note that for types here, we are not referring to the actual
type of a concrete value, instead, we are referring to the inherent
types. The inherent type is the same after type juggling. Suppose
an integer is cast as string in the application, we do not record this
as string but instead as integer. Indeed, all fields in the result from
the call mysqli_query are cast as string, regardless of what the
type is attributed to each of them in the table schema. Yet, they are
directly used as their inherent type through out the execution in
web applications, which is made possible by type juggling. Hence,
for data synthesis purposes, we need to infer the inherent types
but not the actual types.

We consider type information to be crucial because an inaccurate
type makes web applications prone to producing errors and unreal-
istic responses. For instance, deserializing an integer or integer-like
object would inevitably lead to error. Another example is that using
a string as an index for an integer-indexed array does not lead
to error but breaks the original logic of the web application. This
situation is unwanted in this context because it produces a spurious
response which is not reproducible in an actual run of the web
application using the actual table schema.

In the query, we could gain type information for fields when
the operations processing or generating the field is known and the
argument types are well-defined. This is because type juggling in
SQL would lead to an error or warning. For instance, comparison
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between a field and an integer would help us conclude that the
type of the field must be integer. However, it is impossible to infer
all types from evaluating queries. Thus, we additionally infer the
type of fields by the information during the execution. Specifically,
CorbFuzz collects type information via two methods. First, if the
field encounters the binary comparison operand, CorbFuzz records
the type of the concrete value it is comparing to. Second, CorbFuzz
tracks the internal functions that the field is served as an argu-
ment. Internal functions typically have clear definition of types of
each argument. For simplicity, CorbFuzz ignores corner cases like
comparison between two fields and passing to an internal function
supporting all types. Future work may leverage Hindley-Milner
algorithm [36] to construct a more fine-grained typing system.

Still, concolic execution is not enough for inferring types of all
symbolic variables. Some of them may not be passed to an internal
function or used in comparisons. Additionally, comparison between
variables of different types are allowed and it is impossible to deduce
the inherent type of a concrete value. These factors mean there
is a possibility that a different type is used against the compared
variable. To accommodate for these cases, we define a domain of
types (𝜏) for each symbolic variable and assign a weight to any
type 𝑡 ∈ 𝜏 . At initialization, each 𝑡 is set with an initial weight
and increased whenever it matches inference after the generation
of result by concolic execution, which we refer as type hints. If
query analysis has already assigned a type, then the type would
have infinite weight in 𝜏 . Before constraint solving for generating
result is initiated, the synthesizer conducts a probabilistic sampling
from 𝜏 for each symbolic variable based on weights assigned to
types (the probability of a type to be chosen is proportional to the
weight of the type). Due to probabilistic selection, a variety of types
are explored during fuzzing. Here, we assume that if a type for a
variable is not intended, then this incorrect type used would lead
to either errors or no effect on analysis. In general, CorbFuzz tries
to increase the likelihood that a correct type will be used.

In Procedure 2, Field procedure conducts a probabilistic sam-
pling over the 𝜏 for each field (Line 19-22). In our implementation,
we utilize A-res algorithm [45]. Result returned by Field procedure
is always tracked. Notify procedure is called when the tracked
value is used in internal functions or for comparison. The type hint
is used to increase weight for that type in 𝜏 . In our implementation,
we only let 𝜏 to include integers, strings, and booleans. Type hints
for types that are not in 𝜏 are ignored.

In the example provided in Figure 1 Line 10, after the Field
procedure ends, $a is assigned the generated value that is tracked.
On Line 12, the tracked value is compared to an integer. TheNotify
procedure is called, adding weight for the integer type for the field
a.

3.3 Authentication Bypass Workflow
Cookies and sessions are commonly leveraged by web applications
to make HTTP requests stateful [25, 34], allowing for the imple-
mentation of authentication. Both of them could be represented
as a hashtable. We observed that there could be a significant in-
crease in coverage for a web application if cookies or sessions are
set properly (e.g. an authentication token presents for a specific
field). It is because complex logics inside web applications tend to be

1 <?php
2 session_start ();
3
4 if (isset($_SESSION["is_auth"]))
5 echo $_SESSION["welcome_message"];

Figure 2: Example of PHP Application Session Usage

reached after the request presents to be authenticated or authorized.
Usually, the cookie or session keys and values are compared to a
constant or a result from the database. Therefore, using a fuzzer to
explore cookies and sessions is largely ineffective since there is a
huge search space for the keys and values.

To better explore behaviors of web applications, we generate de-
cisions for comparison operations with session or cookie involved.
The method is inspired by hybrid fuzzing but different from it. In-
stead of solving constraint for the path, the fuzzer only solves the
constraint one time when necessary. That is, if an item of cookies
or sessions have not been passed to operation that does not have a
SMT formula translation available, the value would be never gen-
erated. Still, we record the constraints for the decisions we made
by treating each item in sessions or cookies a pair of symbolic vari-
able: < 𝜙, 𝛼 >, where 𝜙 is the gated boolean symbolic variable that
shows whether the item is defined and 𝛼 represents the value of
the item1.

The reason we do not generate the data as soon as it is used is
largely due to the use cases of sessions and cookies. They are used
in multiple or nested branches but most of the time, their concrete
value would not be evaluated. Additionally, there are very few inter-
nal functions that commonly use sessions or cookies as arguments.
We have implemented only basic arithmetic and isset [6] internal
call with translation of SMT formula but most requests do not re-
quire generating the concrete value of sessions and cookies. Note
that we do not define a strict bijection here between seed and the
session. A specific session state may map to multiple seeds. This is
because the constraints here are not permissive.

We have shown the crucial components for the workflow in
Procedure 3 for sessions, which is identical for cookies. Similar
to previous workflow for database, there is also an initialization
procedure which creates a global hashtable for caching. Specifically,
GC is for storing the mapping between seed and the session state.
Additionally, there is a Start procedure, which is called before the
HTTP requests is handled and the variable declared only survive
during the lifecycle of that request. The procedure creates a copy
of seed and declare a hashtable for saving the constraints for each
during the request.

When an item of the session is compared with a concrete value,
the Do procedure is used. This procedure functions as a middle-
ware over the comparison operation. CorbFuzz first checks whether
there is already cache for the item compared in regards to the seed.
If there is a cache hit, then the item is assigned a concrete value
and the internal implementation of the comparison operation is
executed. Otherwise, CorbFuzz checks whether the operation is
implemented so that it could convert the decision of the operation
to a constraint. If so, a decision is generated from the seed and the

1We used an identical approach as previous to infer types. For conciseness, we do not
list the operations for type here.
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Procedure 3 Session Generation Algorithm

1: procedure Initialization
2: GC← HashTable()
3: procedure Start
4: RCache← HashTable()
5: NewSeed← Copy(Seed)
6: procedure Do(Name, Opline)
7: if GC(Seed, Name) then
8: Session(Name)← GC(Seed, Name)
9: return Next()
10: if Opline.Operand ∈ ImplementedOp then
11: decision← NewSeed & 1
12: ShiftRight(NewSeed)
13: c← ToConstraint(Opline, decision)
14: if ¬ IsSAT(RCache(Name) ∪ c) then
15: return Do(Name, Opline)
16: RCache(Name)

+← c
17: return decision
18: else
19: c← RCache(Name) ∪¬ GC(*, Name).RRemove()
20: if c = UNSAT then return Abort()
21: GC(Seed, Name)← Solve(c)
22: return Do(Name, Opline)

constraints for performing this decision are appended to the con-
straints over that item. An SMT solver is then used to check whether
the constraint is satisfiable. If it is not satisfiable, then the proce-
dure recursively consumes the seed until there is a decision that
could be satisfied. Our implementation assumes there are at most
32 decisions since we are using a 32-bit seed. In our experiments,
the maximum consumption is only 11 bits in a specific request. The
decision then is returned and the internal implementation of the
comparison is ignored. As for the corner case that a session item is
compared to another session item, we treat this comparison as an
unimplemented operation for one side (i.e. generate the concrete
value) and then apply the workflow to the other side. When the
operation is not implemented, then a concrete value is generated
by solving the constraint for that item. To ensure the uniqueness of
the concrete value generated, the solver tries to avoid using already
solved values stored in global cache for that field name. To reduce
UNSAT cases, each stored value in cache is randomly removed from
consideration. As mentioned previously, by doing so, we are unable
to achieve uniqueness.

For PHP code listed in Figure 2, when it executes until Line 4,
CorbFuzz first declares a pair of symbolic variables < 𝜙0, 𝛼0 > and
makes a decision for the unary comparison isset based on the
seed. Suppose the seed indicates the decision is to return true, then
the constraint 𝜙0 = true is added to the set of constraints for the
$_SESSION["is_auth"]. Note that this session item is not used
later, so its concrete value is never generated. Then, on Line 5, an-
other session item is used. We have not implemented echo function
and the value of $_SESSION["welcome_message"] is generated
with respect to its constraints (i.e. no constraint in this context).

PHP Runtime
PHP Runtime

PHP RuntimePHP Runtime

Data Synthesis
Coverage

BitmapCorpus

Mutator Requestor
& Monitor

Coverage Guided Fuzzer

HTTP 
Req/Resp

Coverage 
Stream

Result Sink

Application Hosting Env.Oracle

Policy Oracle

Browser CORB
Impl.

Figure 3: CorbFuzz Architecture

4 BROWSER POLICY FUZZING
In this section we present a coverage-guided fuzzing method called
CorbFuzz to check browser security policies. Coverage-guided
fuzzing is a method for testing programs to find bugs and security
vulnerabilities. It generates new inputs by mutating an element in
corpus to test the program. If a mutated input leads to increase in
the code coverage of the software, it would be added to corpus for
future mutation.

4.1 Fuzzing Algorithm

Procedure 4 CorbFuzz Algorithm

1: procedure CorbFuzz(WebApplication)
2: 𝑃 ← DataSynthesis(WebApplication)
3: CovBitMap← BitMap()
4: ResultSink← HashTable()
5: NewURL← List()
6: Visited← Set()
7: for ¬ShouldTerminate() do
8: U, Seed← (Corpus ∪ (NewURL - Visited)).Pop()
9: U, Seed←Mutate(U, Seed)
10: Visited

+← U
11: Metrics, R, M← 𝑃 (U, Seed)
12: NewURL

+← ExtractLinks()
13: if IsNewCoverage(CovBitMap, Metrics) then
14: Corpus

+← U, Seed
15: CovBitMap

+←Metrics
16: ResultSink

+← (R, M)
17: AnalyzeResult(ResultSink)

We present the architecture of CorbFuzz in Figure 3 and its algo-
rithm in Procedure 4. CorbFuzz is a multi-threaded fuzzer and it
supports distributed fuzzing. Initially, the fuzzer creates multiple
instances of the application runtime which is instrumented as dis-
cussed in Section-3. We define the application hosting environment
to be a function 𝑃 : (URL, Seed) → {Metrics, R,M}, where Metrics
represents the coverage metrics, R represents the resource queried
by the web application, and M maps each CORB implementation
to its decision on whether to block the response. Analogous to a
pipeline, the HTTP requests are first passed to the runtime hosting
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web application and HTTP responses generated are then served as
inputs for different CORB implementations.

On Line 3 of Procedure 4, a bitmap is created so as to record
the coverage. CorbFuzz additionally declares a result sink (Line
4) for storing the inputs for the oracle. The details of these are
elaborated in the following sections. During fuzzing, the fuzzer
randomly selects a pair of inputs, which are a request URL and
potentially a seed, to mutate and send the corresponding HTTP
request to the hosting environment (Line 7). If the input leads to
increased test coverage, it is added to the corpus. The information
required by the oracle is stored in the result sink. Additionally, a
list is declared (Line 5) for storing the URLs extracted from the
HTTP response (e.g. href values and API calls). Note that this list
is different from the corpus. As previously mentioned, an input in
corpus contains an URL as well as a seed for describing the state of
the persistent layer. The element in the list is instead only the URL.

After the fuzzer terminates, the oracle aggregates the informa-
tion in result sink and provides a decision for each HTTP response.
These decisions are compared with the browser decisions to identify
the potential weakness.

4.2 Policy Oracle
To define a policy oracle, we need to categorize the resource ac-
cesses as confidential or non-confidential and as we described in
Section 2.2, CORB should block any HTTP response containing
confidential information. We limit the scope of resource to be only
provided by the database for this work. We use a method similar to
Pellegrino et al. [37] which deduces confidentiality of a resource
by observing resource access frequency. After fuzzer terminates,
we aggregate and count the number of resource accesses done by
each database query executed during handling each request. In
our implementation, we use the average number of accesses as
our threshold. If any query uses resources that have frequency
below the threshold, we infer that the query is accessing a confi-
dential resource, which should be blocked, and check if the CORB
implementation blocked it.

Granularity of the resource impacts the result of the oracle. For
example, if the resource is considered as a table, oracle is more
likely to block the response than if the resource is considered as
a row in that table. Hence, coarse grain resources are more likely
to produce false positives. We designed two types of oracles with
different resource granularity. To reduce false positives, one oracle
considers each unique row (i.e., query constraints) to be a resource,
and to reduce false negatives, the other oracle considers each table
to be a resource.

4.3 Coverage Metrics
Rather than utilizing test coverage of CORB function, we collect
test coverage from the web application. That is, we are feeding
inputs that could contribute to the coverage of the web application.
While the coverage information of CORB function may enhance
the fuzzing in regards to efficiency, this is largely useless. It is
because CORB function is a small piece of code in both WebKit
and Chromium. Thus, it is extremely easy to achieve high coverage
of CORB function during attempts to achieve high test coverage
in web application. Additionally, we are evaluating the policy for

LoC Range of Applications Average LoC
Less than 1K 15 476.9
Between 1K and 10K 15 3022.5
Between 10K and 100K 6 43075.5
More than 100K 3 250875.5

Table 1: Total LoC Statistics for fuzzing targets

different code patterns. Focusing on what CORB is able to handle
would not lead to identification of potential weaknesses in the
implementation.

5 IMPLEMENTATION & EVALUATION
We have implemented CorbFuzz in Python in 500 lines of code
(LoC) for fuzzing web applications written in PHP. Unlike existing
web application fuzzers that only consider responses related to
PHP, CorbFuzz considers all responses after a web page is loaded,
including responses containing images, CSS, and RPC calls. The
fuzzer is able to fuzz a web application and check security policies.
The data synthesis workflow is implemented as an external module
with 500 LoC in C and 1200 LoC in NodeJs for PHP. PHP 7.4 has
been instrumented to support the workflow and provide branching
information for coverage evaluation. To allow for fair evaluation on
data synthesis effectiveness, we implement two baseline workflow
by removing components inside the previously implemented fuzzer.

In the following subsections, we address the following research
questions;
RQ1. Is data synthesis workflow generating consistent data?
RQ2. Can data synthesis workflow increase test coverage?
RQ3. Can CorbFuzz detect bugs in implementation in existing
browsers?

5.1 Experimental Setup
5.1.1 Environment. We evaluate CorbFuzz on two Intel Xeon Phi
7210 (64 cores) nodes. Both nodes use Ubuntu 20.04 with one node
running NGINX[10] for serving web application on the instru-
mented PHP environment and other node running the coverage-
guided fuzzer.

5.1.2 Targets. Weevaluate CorbFuzzwith two popularweb browsers:
Chromium andWebKit (Safari). Chromium has already added CORB
into its current stable release. We implement a test harness based on
the Chromium library containing the CORB implementation. For
WebKit, the developers have created a pull request for CORB im-
plementation but it has not yet been merged into the main branch.
Since its implementation is relatively simple and straightforward,
we directly translate it into Python to implement a test harness for
Webkit’s CORB implementation.

5.1.3 Web Applications. Web applications are fuzzed to provide
response as input for browser test harnesses. We crawled 300 repos-
itories using PHP from GitHub between March 2nd, 2021 and April
10th, 2021. The repositories are filtered out if they do not contain
index.php or index.html. For simplicity, we do not consider appli-
cations that require downloading dependencies with Composer[2],
a dependency management tool. The count of remaining applica-
tions are 58 with varying LoCs. We fuzz the policies with these
58 applications but for the sake of evaluation of data synthesis

7
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Figure 4: The percentage of generating correct types for
comparison statements for CorbFuzz and CorbFuzz without
Type Inference for 3 minutes of runtime. X axis denotes the
web application number.
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Figure 5: The percentage of generating correct types for in-
ternal function calls for CorbFuzz and CorbFuzz without
Type Inference for 3 minutes of runtime. X axis denotes the
web application number.

effectiveness, we only use 39 of them, for which CorbFuzz reports
existence of branches or utilization of databases. The statistics of
these applications are presented in Table 1.

5.2 Data Synthesis Effectiveness
To evaluate the data synthesis approach and address RQ1, we ran
CorbFuzz with and without type inference for 3 minutes with each
web application and compared the percentage of correct data gener-
ations for comparisons (where the generated variable is compared
to a fixed value, e.g an integer) and internal function calls (where
the arguments have defined types). Figures 4 and 5 demonstrate
the percentage of correct generations for comparison statements
and internal function calls respectively. Figure 4 shows that for 10
applications, CorbFuzz generates the correct type for comparisons
more often than CorbFuzz without type inference with 17% more
data generations with correct type in average. Figure 5 shows that
for 11 applications, CorbFuzz generates the correct type for internal

function calls more often than CorbFuzz without type inference
with 5% more data generations in correct type in average.

On some applications, CorbFuzz has little improvement on accu-
racy of type generation because in the results we show, we consider
all type violations. However, many of these type violations are due
to developers using type juggling and they are not due to data
synthesis. Therefore they cannot be removed by improving type
inference in data synthesis.

0

25

50

75

100

1 2 3 4 5 7 8 9 10 12 13 14 18 19 20 21 22 25 31 32 34 35 36 37 38 39

CorbFuzz without Type Inference and Authentication Bypass
CorbFuzz without Type Inference CorbFuzz

Figure 6: The percentage of edges covered for CorbFuzz,
CorbFuzz without Type Inference and CorbFuzz without
Type Inference and Authentication Bypass in 3 minutes of
runtime against edges covered by CorbFuzz. X axis denotes
the web application number.

We are also evaluating the impact of data synthesis on fuzzing
effectiveness and address RQ2. Figure 6 demonstrates the edge
coverage difference in terms of percentages or actual edge counts
between CorbFuzz without any type inference or authentication
bypass, CorbFuzz without type inference and CorbFuzz. For this
evaluation, we only chose applications containing more than one
branch as some applications just present the data obtained from
the database without any branching involved. Figure 6 shows that
for almost all applications, the inclusion of type inference and
authentication bypass improves coverage. The average number of
edges covered is 16.2 edges for CorbFuzz without type inference
and authentication bypass, 19.0 edges for CorbFuzz without type
inference and 27.5 for CorbFuzz. These results demonstrate that
with the inclusion of type inference and authentication bypass, we
can cover in average 70% more edges and with the inclusion of
just type inference, we can cover in average 45% more edges which
shows the effectiveness of our data synthesis.

The number of edges covered is low for some applications be-
cause these applications save and use structural or serialized data
from the database. The data synthesis workflow is unaware of
the structural property of any field, therefore it generates a large
amount of data that can not be deserialized by the web application
and fails to explore these web application. However, we recognize
that this can be prevented by enlarging the domain of type 𝜏 de-
fined. By considering the common structural properties as types
(e.g. JSON type) and instrument deserialization libraries to provide
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Figure 7: Finite State Machine for Validating JSON

type hints, future work could implement an approach that is able
improve web application coverage.

5.3 Detected CORBWeaknesses
We have discovered three classes of code patterns, which are dis-
cussed in following sections, that cause the CORB implementation
in Chromium to not function as expected. One of the cases has
been filed in the Chromium bug tracker before our discovery by a
Chromium developer and is still in discussion2. We have reported
another one3, which has later been resolved by a patch in the CORB
component4.

Serialized Array as JSON Response. In Chromium, if the re-
sponse MIME type is related to JSON, CORB would check the re-
sponse content to learn whether it is indeed JSON. A finite state
machine (FSM) conducts such a check. As illustrated in Figure 7,
the FSM does not comprehensively parse the response content to
perform the check. Instead, it only checks whether the content has
a left brace at the beginning and has matching quotes for the first
key to determine if the content is JSON.

As permissive as it is, such a check would not identify a serialized
array in JSON format, which is considered a JSON object inside the
JavaScript runtime of Chromium. Indeed, the latest JSON specifi-
cation (RFC 8259[8]) refers this to be a different type from JSON
object known as JSON array. For instance, for a simple response
as [1,2,3], a JSON array, JSON check in CORB implementation
would first look for the left brace. Yet, the first character is left
bracket, which makes the FSM classify the content as not JSON.
However, fetch, XMLDocument, and JSON.parseAPIs in JavaScript
runtime parse the content into a JavaScript object without warning.

Sending JSON array as responses is commonly seen in web ap-
plication APIs. The responses of these APIs would likely carry
sensitive information. Thus, we consider catching JSON array for
JSONMIME type in CORB implementation to be a reasonable patch.

Malformed JSON Response. It is not uncommon for web ap-
plication developer to adopt the following code pattern, where $var

2https://crbug.com/anonymized
3https://crbug.com/anonymized
4https://chromium-review.googlesource.com/c/chromium/src/+/anonymized/

represents any variable the attacker can control (i.e. a tainted vari-
able), which could be achieved through methods including URL
manipulation and security-unrelated CSRF[42].

1 <?php
2 header('Content -Type:␣application/json');
3 echo "{\" $var \":\" $secret \"}";

This code pattern does not leverage the existing serialization
library. Instead, it produces serialized objects by direct string con-
catenation and manipulation. If the attacker is able to control the
first key of a JSON object, they would be able to bypass the CORB
check by making that key as a control character. According to JSON
specification, control characters (U+0000 through U+001F) inside
key and value of JSON object should be escaped (i.e., append a
reverse solidus before the control character). Similarly, the JSON
verifier inside CORB implementation in Chromium follows this pat-
tern and rejects all JSON objects with unescaped control characters
on the first key.

Consider the PHP code shown above. If we set $var to be the
control character \u0017, the resulting response would become
{"\u0017": "[SECRET]",[MORE SECRETS]}. The JSON checker
FSM enters the state “Left Quote” after encountering the first and
second characters. It then compares character \u0017 to control
character range and identifies it as an unescaped control character,
misclassifying the response as not JSON.

We consider this weakness should be addressed as the existence
of such a code pattern is not negligible. We have reported this to
the Chromium team, and it has been fixed by removing the check
for control character inside the JSON checker.

Confirmation Sniffing. In most web applications, warnings
and errors in plaintext or HTML are directly prepended to the
response. For PHP, a warning in HTML is generated whenever an
undefined behavior happens. If a malicious actor is able to trigger an
undefined behavior in responses that are checkedwith confirmation
sniffing, then CORB in Chromium could be bypassed since the
responses start with data that is not of their MIME type.

This weakness, including all previous weaknesses, could be con-
sidered as the side effect of reduction in permissiveness caused
by confirmation sniffing. We consider that confirmation sniffing is
harming the effectiveness of the CORB implementation in Chromium.
Future work, on the other hand, could work on testing the con-
tribution of confirmation sniffing on compatibility and conclude
whether confirmation sniffing is indeed redundant.

5.4 Fuzzer Flexibility
We have constructed an oracle for ORB and test the proposed imple-
mentation. Our fuzzer is unable to discover any weakness of ORB.
It is because ORB applies a whitelist approach to block requests yet
CORB uses a blacklist, which means ORB is much less permissive
than CORB. Future work could apply similar approach to evaluate
its compatibility.

6 RELATEDWORK
Coverage-guided Fuzzing. Coverage-guided fuzzing have been
used to find bugs in many programs such as virtual machines [19],
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web browsers [15, 47], and operating systems[28, 29]. The state-of-
the-art implementations are AFL [32] and libFuzzer [41]. In this
paper we used coverage-guided fuzzing for browser security policy
checking. Yet, our approach is not using the coverage of the browser,
but instead guided by the coverage of the web applications.

Browser Fuzzing.Domato [14], Dharma [13], and FreeDom [47]
are all specialized fuzzers used to discover memory-related vul-
nerabilities and assertion violations in DOM implementation of
browsers. They generate structural data that contain valid HTML,
CSS, andDOM-related JavaScript for browsers to render. Fuzzilli[15]
and Jsfunfuzz[12] are fuzzers for discovering vulnerabilities in
JavaScript engines, which utilize a similar approach to generat-
ing structural data. Our work is different from all these approaches
since the oracle of CorbFuzz is defined based on the property of the
web applications and CorbFuzz does not generate the test cases but
instead utilize web applications responses. Roy et al. [39] fuzzes
web applications and supply responses to browsers to detect vi-
sual inconsistencies between browsers. It is similar to our work
in the sense that both works treat web application and browsers
together as black box. Unlike their work which focuses on testing
web applications, our work focuses on testing security policy in
browsers. We also do not cross reference between browsers but
using an oracle defined based on web applications instead.

Web Application Testing. Alshahswan et al. [16] and Biagiola
et al. [18] propose search based approaches to testing web appli-
cations. Both works use metaheuristic approaches such as genetic
algorithms to explore and generate different inputs to extensively
test web applications. Different from our work, [16] requires the
input types and login information. [18] requires Page Objects to
be provided to test the web application. Our work instead avoid
manual analysis through data synthesis. Elbaum et al. [20] proposes
the web application testing should mutate the sessions and provides
a few mutation technique that could help achieve better coverage.
Data synthesis in our work is different from Elbaum et al. since
we do not mutate the sessions but instead symbolically evaluate
or generate them. Apollo [17] and Wassermann et al. [46] leverage
both concolic execution and fuzzing (i.e. hybrid fuzzing) to increase
edge coverage of web applications and discover their vulnerabilities.
Session generation workflow in data synthesis is utilizing a hybrid
method but it is fundamentally different from the concept of hybrid
fuzzing.

7 CONCLUSION
We have created a browser policy fuzzer CorbFuzz which uses
web application response to fuzz the browser security policies. To
avoid setting up the web applications manually, we proposed a
web application hosting environment that synthesizes data. The
resources queried by the web application are either generated or
symbolically represented. We have shown that the data synthesis
approach does not only generate consistent data but also increases
test coverage for web applications. We have evaluated CorbFuzz
on CORB implementations of Chromium and WebKit as well as
ORB proposal for Firefox. By fuzzing them with 58 applications,
we discovered three classes of weaknesses in implementation in
Chromium.
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