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ABSTRACT

This paper proposes a state-aware fuzzing framework for test-
ing software-defined network applications. It leverages a property
graph to store fuzzing results. Application developers can easily
express oracles with the graph query language to test their applica-
tions. The graph representation also allows the oracles to analyze
the fuzzing result efficiently.
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1 INTRODUCTION

Software-defined network (SDN)[14, 19] has been proposed to miti-
gate the management dilemma of the increase in network complex-
ity. SDN decouples network infrastructure to forwarding plane (i.e.,
programmable switches) and control plane. Multiple centralized
servers serving as the control plane oversee the states of the for-
warding plane and modify the states if triggered. For the forwarding
plane, DSLs[8, 24] are introduced for its definition. A typical for-
warding plane program can be represented as a pipeline with a finite
state machine that parses the packet to be structural data, then a
few match-action tables that mutate the structural data or state
based on these information, and finally a deparser that reassembles
the structural data into a packet. The combination of programmable
forwarding plane and control plane enables the development of
vibrant network applications, like telemetry system[11, 23], DDoS
detection[13, 15], and network side-channel protection[17].
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Adoption of SDN introduces new attack surfaces. A simple
failure or error could lead to significant impact, including allow-
ing arbitrary access to confidential information[3] and network
outage[1, 10]. Thus, testing and verifying the SDN applications is
of great importance. However, securing a network application is
challenging as there are multiple stakeholders and indeterministic
factors in the network.

Fuzzing is commonly used for detecting bugs in software [4,
5,9, 12, 18, 25]. We applied fuzzing for testing SDN applications
and propose a state-aware fuzzing framework, which is named
as PorkFuzz. PorkFuzz supplies inputs to both control plane and
forwarding plane. Then, it records results (e.g., egress packets) and
state changes in a property graph. For expressing oracles that could
analyze these information, the framework provides an abstraction
for developers. Such an abstraction is based on graph query lan-
guage, which supports relational inference and aggregation.

2 RELATED WORK

Previous works including p4pktgen[16] leverage concolic testing
techniques to generate packet inputs that could achieve high cov-
erage of the forwarding plane program for testing. This method
does not model the relationships between the forwarding plane and
control plane. It randomly synthesizes the states that may not be
reproducible, leading to false positives.

Fuzzing solutions like P4RL[22] and P6[21] tests forwarding
plane programs using coverage-guided fuzzers. However, their ap-
proaches does not consider the state of forwarding plane (e.g., states
are never recovered for re-exploration), and disallow aggregation-
based oracles.

Other testing works like P4Fuzz[7] and Gauntlet[18] leverage
coverage guided fuzzing to test the SDN application compilers and
runtimes of different switches. P4Consist[20] is a tool to identify
the inconsistency between states of control plane and forwarding
plane. This is similar to our work in regards to checking the system
as a whole but our work presents a more general fuzzing framework
that is state-aware, checks beyond forwarding decisions, and allows
efficiently expressing oracles.

3 METHODOLOGY

At the high level, we define a coverage-guided state-aware fuzzing
method to test the SDN applications. The test coverage informa-
tion is collected from the virtual switch runtime and oracles are
executed after the fuzzer terminates. In addition to conventional
fuzzing strategy, PorkFuzz recovers states based on snapshots. Af-
ter a packet (i.e., testcase) from the corpus is mutated and sent to
either control plane or forwarding plane, a hash of the state is then
calculated. When a state hash is unique (i.e., never seen before),
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Figure 2: Fuzzing result size of baseline and PorkFuzz

PorkFuzz retrieves all state information required to recover such a
state and save it to the priority queue. The state is assigned with
a high priority, signifying it is the least explored state. When the
coverage of a runtime instance does not increase over a threshold
amount of times, the instance is released. The released instance
is then recovered with a state having the highest priority in the
priority queue, and the priority of that state would be decreased.

The fuzzing result is saved as a property graph. Each test case and
its corresponding results could be expressed by two classes of trees
known as PACKET and STATE. For each test case, a packet is supplied
to forwarding plane or control plane test harness. The forwarding
plane packet (i.e., a list of bits) is represented as a PACKET tree. We
introduce a type of child nodes representing the FSM states for
parsing the packet, namely FSM state nodes, by tracking the parser
of the forwarding plane program. Each node in the tree carries
the key value information of the structure extracted by the parser
at that state. Each node also has a field with the unique hash of
remaining packet content for merging same nodes together (e.g.,
Figure-1). FSM information is important for oracle construction
since it translates a packet in bits to structural data that could be
efficient queried by graph query language.

Processing each packet results in either identical or different state
for switches. We represent a state as STATE tree. Root node for this
contains hash of the state so as to aggregate packets executing in
such state. State of most SDN models could be simply expressed by
a set of key-value pairs that could be saved directly in the root node.
Some introduce the concept of array, which could be expressed as
some child nodes with a parent node containing key information.
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Bug # | Bug Cause P4RL | p4pktgen | PorkFuzz
1[21] | Forwarding Plane v v
2[21] | Forwarding Plane v v v
3[21] | Runtime v v v
4[2] Runtime v
5[20] | Runtime v v

Table 1: Comparison of different approaches on discovering
bugs after fuzzing applications for 10 minutes

4 EXPERIMENT

We have implemented PorkFuzz in Python with 800 LoCs. Neo4]J[6],
a widely-used property graph database, and Cypher, the inherent
graph query language, are used to query and store the graph.

To test our approach, we fuzzed SDN applications with known
bugs. For evaluating the growth of data size of the result produced
by PorkFuzz and required by the oracles, we implement a baseline
approach that directly output the result in pcap files and raw state
dump. The result is shown in Figure-2, in which the growth rate
of raw data size is higher than that of the property graph. The
difference in growth rate is due to the majority of packets have
the same FSM states, which enables property graph to reuse a
significant amount of nodes as the fuzzer progresses.

In Table 1!, PorkFuzz is able to discover a new bug that is not
able to be discovered by both P4RL[22] and p4pktgen[16] since
their approach can not efficiently re-explore states and do not sup-
port control plane testcases. Below, we provide the case study on
identifying Bug 1 and Bug 4. Oracles in the case study use CPP and
FPP referring to all packets sent to control plane and forwarding
plane respectively.

Bug 1 is caused by forwarding plane program not discarding
packets that have TTL as 0. By running following oracle, PorkFuzz
is able to identify the packets that are not dropped.

Vx € FPP, x.ttl = 0 —!x.port

Using the result after fuzzing the program for 10 minutes, the graph
based oracle takes 8 seconds to identify all counter cases while
directly analyzing the pcap files in Python takes 106 seconds.

Bug 4 is caused by runtime failing to handle a corner case in
implementation of longest prefix match (LPM) and exact match. We
use following oracle, which states that a packet should be forwarded
with respect to the LPM table entries (i.e., select the appropriate
forwarding entry with the largest mask).

P(x,c) = Vx € FPP,Vc € x.table, x.ip € Range[cs, ce]

Vx € FPP, argmax._ , (P(x,c)) — (x.fp = c.fp)
On the same property graphs, this oracles spend 44 seconds for
execution and the fuzzer identified two violations. Directly using
Python to analyze the pcap files and state dumps, on the other hand,
takes 842 seconds.

5 CONCLUSION

We proposed PorkFuzz, a fuzzing solution that leverages property
graphs, and demonstrated that it is efficient for testing stateful SDN
applications.

!We reimplemented P4RL in Python and created a custom oracle inside the virtual
switch for p4pktgen
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