PorkFuzz: Testing Stateful Software-Defined Network
Applications with Property Graphs

Chaofan Shou
University of California, Santa Barbara
Santa Barbara, CA, USA
shou@cs.ucsb.edu

ABSTRACT

This paper proposes a state-aware fuzzing framework for test-
ing software-defined network applications. It leverages a property
graph to store fuzzing results. Application developers can easily
express oracles with the graph query language to test their applica-
tions. The graph representation also allows the oracles to analyze
the fuzzing result efficiently.

CCS CONCEPTS

+ Networks — Programmable networks; « Software and its
engineering — Software verification and validation.

KEYWORDS

coverage-guided SDN fuzzing; network validation

ACM Reference Format:

Chaofan Shou. 2021. PorkFuzz: Testing Stateful Software-Defined Network
Applications with Property Graphs. In Proceedings of the 29th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 21), August 23-28, 2021, Athens, Greece.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3468264.3473487

1 INTRODUCTION

Software-defined network (SDN)[14, 19] has been proposed to miti-
gate the management dilemma of the increase in network complex-
ity. SDN decouples network infrastructure to forwarding plane (i.e.,
programmable switches) and control plane. Multiple centralized
servers serving as the control plane oversee the states of the for-
warding plane and modify the states if triggered. For the forwarding
plane, DSLs[8, 24] are introduced for its definition. A typical for-
warding plane program can be represented as a pipeline with a finite
state machine that parses the packet to be structural data, then a
few match-action tables that mutate the structural data or state
based on these information, and finally a deparser that reassembles
the structural data into a packet. The combination of programmable
forwarding plane and control plane enables the development of
vibrant network applications, like telemetry system[11, 23], DDoS
detection[13, 15], and network side-channel protection[17].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8562-6/21/08.

https://doi.org/10.1145/3468264.3473487

Adoption of SDN introduces new attack surfaces. A simple
failure or error could lead to significant impact, including allow-
ing arbitrary access to confidential information[3] and network
outage[1, 10]. Thus, testing and verifying the SDN applications is
of great importance. However, securing a network application is
challenging as there are multiple stakeholders and indeterministic
factors in the network.

Fuzzing is commonly used for detecting bugs in software [4,
5,9, 12, 18, 25]. We applied fuzzing for testing SDN applications
and propose a state-aware fuzzing framework, which is named
as PorkFuzz. PorkFuzz supplies inputs to both control plane and
forwarding plane. Then, it records results (e.g., egress packets) and
state changes in a property graph. For expressing oracles that could
analyze these information, the framework provides an abstraction
for developers. Such an abstraction is based on graph query lan-
guage, which supports relational inference and aggregation.

2 RELATED WORK

Previous works including p4pktgen[16] leverage concolic testing
techniques to generate packet inputs that could achieve high cov-
erage of the forwarding plane program for testing. This method
does not model the relationships between the forwarding plane and
control plane. It randomly synthesizes the states that may not be
reproducible, leading to false positives.

Fuzzing solutions like P4RL[22] and P6[21] tests forwarding
plane programs using coverage-guided fuzzers. However, their ap-
proaches does not consider the state of forwarding plane (e.g., states
are never recovered for re-exploration), and disallow aggregation-
based oracles.

Other testing works like P4Fuzz[7] and Gauntlet[18] leverage
coverage guided fuzzing to test the SDN application compilers and
runtimes of different switches. P4Consist[20] is a tool to identify
the inconsistency between states of control plane and forwarding
plane. This is similar to our work in regards to checking the system
as a whole but our work presents a more general fuzzing framework
that is state-aware, checks beyond forwarding decisions, and allows
efficiently expressing oracles.

3 METHODOLOGY

At the high level, we define a coverage-guided state-aware fuzzing
method to test the SDN applications. The test coverage informa-
tion is collected from the virtual switch runtime and oracles are
executed after the fuzzer terminates. In addition to conventional
fuzzing strategy, PorkFuzz recovers states based on snapshots. Af-
ter a packet (i.e., testcase) from the corpus is mutated and sent to
either control plane or forwarding plane, a hash of the state is then
calculated. When a state hash is unique (i.e., never seen before),

https://doi.org/10.1145/3468264.3473487
https://doi.org/10.1145/3468264.3473487

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Root FSM State FSM State
Hash x01\x32... Hash \x12\x88... Hash x13\x92...
etheryl proto | 0x0800 ipvd 5! Proto | 0x06 ety ..
..... sIP 8.8.8.8
Root
Hash \x95\xa4...
FSM State ipv4

ether

Hash | \x42\x99...

Proto 0x0801

L B T
[—— Baseline
- 60 - —— PorkFuzz ;
£ : :
2 40 R 4]
Q [! !
N [|
n 20 _ i j]
O ! LI 1 1 _ __-
20 40 60 80 100 120

Fuzzing Time (s)

Figure 2: Fuzzing result size of baseline and PorkFuzz

PorkFuzz retrieves all state information required to recover such a
state and save it to the priority queue. The state is assigned with
a high priority, signifying it is the least explored state. When the
coverage of a runtime instance does not increase over a threshold
amount of times, the instance is released. The released instance
is then recovered with a state having the highest priority in the
priority queue, and the priority of that state would be decreased.

The fuzzing result is saved as a property graph. Each test case and
its corresponding results could be expressed by two classes of trees
known as PACKET and STATE. For each test case, a packet is supplied
to forwarding plane or control plane test harness. The forwarding
plane packet (i.e., a list of bits) is represented as a PACKET tree. We
introduce a type of child nodes representing the FSM states for
parsing the packet, namely FSM state nodes, by tracking the parser
of the forwarding plane program. Each node in the tree carries
the key value information of the structure extracted by the parser
at that state. Each node also has a field with the unique hash of
remaining packet content for merging same nodes together (e.g.,
Figure-1). FSM information is important for oracle construction
since it translates a packet in bits to structural data that could be
efficient queried by graph query language.

Processing each packet results in either identical or different state
for switches. We represent a state as STATE tree. Root node for this
contains hash of the state so as to aggregate packets executing in
such state. State of most SDN models could be simply expressed by
a set of key-value pairs that could be saved directly in the root node.
Some introduce the concept of array, which could be expressed as
some child nodes with a parent node containing key information.

Chaofan Shou

Bug # | Bug Cause P4RL | p4pktgen | PorkFuzz
1[21] | Forwarding Plane v v
2[21] | Forwarding Plane v v v
3[21] | Runtime v v v
4[2] Runtime v
5[20] | Runtime v v

Table 1: Comparison of different approaches on discovering
bugs after fuzzing applications for 10 minutes

4 EXPERIMENT

We have implemented PorkFuzz in Python with 800 LoCs. Neo4]J[6],
a widely-used property graph database, and Cypher, the inherent
graph query language, are used to query and store the graph.

To test our approach, we fuzzed SDN applications with known
bugs. For evaluating the growth of data size of the result produced
by PorkFuzz and required by the oracles, we implement a baseline
approach that directly output the result in pcap files and raw state
dump. The result is shown in Figure-2, in which the growth rate
of raw data size is higher than that of the property graph. The
difference in growth rate is due to the majority of packets have
the same FSM states, which enables property graph to reuse a
significant amount of nodes as the fuzzer progresses.

In Table 1!, PorkFuzz is able to discover a new bug that is not
able to be discovered by both P4RL[22] and p4pktgen[16] since
their approach can not efficiently re-explore states and do not sup-
port control plane testcases. Below, we provide the case study on
identifying Bug 1 and Bug 4. Oracles in the case study use CPP and
FPP referring to all packets sent to control plane and forwarding
plane respectively.

Bug 1 is caused by forwarding plane program not discarding
packets that have TTL as 0. By running following oracle, PorkFuzz
is able to identify the packets that are not dropped.

Vx € FPP, x.ttl = 0 —!x.port

Using the result after fuzzing the program for 10 minutes, the graph
based oracle takes 8 seconds to identify all counter cases while
directly analyzing the pcap files in Python takes 106 seconds.

Bug 4 is caused by runtime failing to handle a corner case in
implementation of longest prefix match (LPM) and exact match. We
use following oracle, which states that a packet should be forwarded
with respect to the LPM table entries (i.e., select the appropriate
forwarding entry with the largest mask).

P(x,c) = Vx € FPP,Vc € x.table, x.ip € Range[cs, ce]

Vx € FPP, argmax._ , (P(x,c)) — (x.fp = c.fp)
On the same property graphs, this oracles spend 44 seconds for
execution and the fuzzer identified two violations. Directly using
Python to analyze the pcap files and state dumps, on the other hand,
takes 842 seconds.

5 CONCLUSION

We proposed PorkFuzz, a fuzzing solution that leverages property
graphs, and demonstrated that it is efficient for testing stateful SDN
applications.

!We reimplemented P4RL in Python and created a custom oracle inside the virtual
switch for p4pktgen

PorkFuzz: Testing Stateful Software-Defined Network Applications with Property Graphs

REFERENCES

[1] 2012.

[2

[3

[12

[13

]

=

]

]

[14]

[16

[17

[18

[19

[21

[22

]

]

]

Microsoft: misconfigured network device led to Azure out-
age. https://www.datacenterdynamics.com/en/news/microsoft-misconfigured-
network-device-led-to-azure-outage/

2016. Exposed bug in LPM match unit’s add_entry: p4lang/behavioral-
model@4323bfb. https://github.com/p4lang/behavioral-model/commit/
4323bfb1b9e9331f6dd185¢5927d3f015cdd1e85

2017. Cloud Leak: WSJ Parent Company Dow Jones Exposed Customer Data |
UpGuard. https://www.upguard.com/breaches/cloud-leak-dow-jones

2021. Domato - DOM fuzzer. https://github.com/googleprojectzero/domato
original-date: 2017-09-21T15:28:59Z.

2021. Fuzzilli - A JavaScript Engine Fuzzer. https://github.com/googleprojectzero/
fuzzilli original-date: 2019-03-20T15:32:47Z.

2021. Neo4]. https://neo4j.com/

Andrei-Alexandru Agape, Madalin Claudiu Danceanu, Rene Rydhof Hansen, and
Stefan Schmid. 2021. P4Fuzz: Compiler Fuzzer ForDependable Programmable
Dataplanes. In International Conference on Distributed Computing and Networking
2021 (Nara, Japan) (ICDCN °21). Association for Computing Machinery, New York,
NY, USA, 16-25. https://doi.org/10.1145/3427796.3427798

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87-95. https://doi.org/10.
1145/2656877.2656890

Tegan Brennan, Seemanta Saha, and Tevfik Bultan. 2020. JVM Fuzzing for
JIT-Induced Side-Channel Detection. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering (Seoul, South Korea) (ICSE
’20). Association for Computing Machinery, New York, NY, USA, 1011-1023.
https://doi.org/10.1145/3377811.3380432

Net economy. 2012. France seeks influence on telcos after outage.
http://blogs.strategygroup.net/wp2/economy/2012/07/11/france- seeks-
influence-on-telcos-after-outage/

Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and
Walter Willinger. 2018. Sonata: Query-Driven Streaming Network Telemetry. In
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Com-
munication (Budapest, Hungary) (SIGCOMM ’18). Association for Computing Ma-
chinery, New York, NY, USA, 357-371. https://doi.org/10.1145/3230543.3230555
Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and
Byoungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux Kernel. In Proceedings
2020 Network and Distributed System Security Symposium. Internet Society, San
Diego, CA. https://doi.org/10.14722/ndss.2020.24018

Angelo Cardoso Lapolli, Jonatas Adilson Marques, and Luciano Paschoal Gaspary.
2019. Offloading Real-time DDoS Attack Detection to Programmable Data Planes.
In 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM).
19-27.

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM Comput. Commun. Rev. 38,
2 (March 2008), 69-74. https://doi.org/10.1145/1355734.1355746

Francesco Musumeci, Valentina Ionata, Francesco Paolucci, Filippo Cugini, and
Massimo Tornatore. 2020. Machine-learning-assisted DDoS attack detection with
P4 language. In ICC 2020 - 2020 IEEE International Conference on Communications
(ICC). 1-6. https://doi.org/10.1109/ICC40277.2020.9149043

Andres Noétzli, Jehandad Khan, Andy Fingerhut, Clark Barrett, and Peter Athanas.
2018. p4pktgen: Automated Test Case Generation for P4 Programs. Proceedings of
the Symposium on SDN Research (2018). https://doi.org/10.1145/3185467.3185497
Antonio J. Pinheiro, Paulo Freitas de Araujo-Filho, Jeandro de M. Bezerra, and
Divanilson R. Campelo. 2021. Adaptive Packet Padding Approach for Smart
Home Networks: A Tradeoff Between Privacy and Performance. IEEE Internet of
Things Journal 8, 5 (2021), 3930-3938. https://doi.org/10.1109/JI0T.2020.3025988
Fabian Ruffy, Tao Wang, and Anirudh Sivaraman. 2020. Gauntlet: Finding Bugs
in Compilers for Programmable Packet Processing. arXiv:2006.01074 [cs.NI]
Myung-Ki Shin, Ki-Hyuk Nam, and Hyoung-Jun Kim. 2012. Software-defined
networking (SDN): A reference architecture and open APIs. In 2012 International
Conference on ICT Convergence (ICTC). 360-361. https://doi.org/10.1109/ICTC.
2012.6386859

Apoorv Shukla, Seifeddine Fathalli, Thomas Zinner, Artur Hecker, and Stefan
Schmid. 2020. P4Consist: Toward Consistent P4 SDNs. IEEE Journal on Selected
Areas in Communications 38, 7 (2020), 1293-1307. https://doi.org/10.1109/jsac.
2020.2999653

Apoorv Shukla, Kevin Hudemann, Zsolt Vagi, Lily Hiigerich, Georgios Smarag-
dakis, Stefan Schmid, Artur Hecker, and Anja Feldmann. 2020. Towards Runtime
Verification of Programmable Switches. arXiv:2004.10887 [cs.SE]

Apoorv Shukla, Kevin Nico Hudemann, Artur Hecker, and Stefan Schmid. 2019.
Runtime Verification of P4 Switches with Reinforcement Learning. Proceedings
of the 2019 Workshop on Network Meets AI & ML - NetAI19 (2019). https://doi.
org/10.1145/3341216.3342206

(23]

[24]

[25]

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Dongeun Suh, Seokwon Jang, Sol Han, Sangheon Pack, and Xiaofei Wang. 2020.
Flexible sampling-based in-band network telemetry in programmable data plane.
ICT Express 6, 1 (2020), 62-65. https://doi.org/10.1016/j.icte.2019.08.005

Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, and Kunle Olukotun.
2020. Taurus: An Intelligent Data Plane. arXiv:2002.08987 [cs.NI]

Meng Xu, Sanidhya Kashyap, Hanging Zhao, and Taesoo Kim. 2020. Krace: Data
Race Fuzzing for Kernel File Systems. In 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, San Francisco, CA, USA, 1643-1660. https://doi.org/10.1109/
SP40000.2020.00078

https://www.datacenterdynamics.com/en/news/microsoft-misconfigured-network-device-led-to-azure-outage/
https://www.datacenterdynamics.com/en/news/microsoft-misconfigured-network-device-led-to-azure-outage/
https://github.com/p4lang/behavioral-model/commit/4323bfb1b9e9331f6dd185c5927d3f015cdd1e85
https://github.com/p4lang/behavioral-model/commit/4323bfb1b9e9331f6dd185c5927d3f015cdd1e85
https://www.upguard.com/breaches/cloud-leak-dow-jones
https://github.com/googleprojectzero/domato
https://github.com/googleprojectzero/fuzzilli
https://github.com/googleprojectzero/fuzzilli
https://neo4j.com/
https://doi.org/10.1145/3427796.3427798
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/3377811.3380432
http://blogs.strategygroup.net/wp2/economy/2012/07/11/france-seeks-influence-on-telcos-after-outage/
http://blogs.strategygroup.net/wp2/economy/2012/07/11/france-seeks-influence-on-telcos-after-outage/
https://doi.org/10.1145/3230543.3230555
https://doi.org/10.14722/ndss.2020.24018
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1109/ICC40277.2020.9149043
https://doi.org/10.1145/3185467.3185497
https://doi.org/10.1109/JIOT.2020.3025988
https://arxiv.org/abs/2006.01074
https://doi.org/10.1109/ICTC.2012.6386859
https://doi.org/10.1109/ICTC.2012.6386859
https://doi.org/10.1109/jsac.2020.2999653
https://doi.org/10.1109/jsac.2020.2999653
https://arxiv.org/abs/2004.10887
https://doi.org/10.1145/3341216.3342206
https://doi.org/10.1145/3341216.3342206
https://doi.org/10.1016/j.icte.2019.08.005
https://arxiv.org/abs/2002.08987
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1109/SP40000.2020.00078

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experiment
	5 Conclusion
	References

